SCIENCE EXPERIMENTS ON
ENVIRONMENTAL EDUCATION AND BIOLOGY
Giorgio Carboni, March 2001
Translation edited by Michael Easterbrook
Some readers wrote to us asking for more experiments and toys to build. As we need of some months to complete an article, we thought of collecting interesting topics, equip them with a short description and links to already existing sites. In this way, our readers may quickly find more instructive and, above all, amusing activities. The experiments which we have gathered in this article concern mainly the environment and the biology. As times go by, many of the links we have proposed will die, in return new sites will be born. We cannot continually update this page. In order to allow to our readers to compensate, we are providing at the end of most experiments, keywords which can be used with search engines, in order to find other sites for themselves. Don't use all these keywords together, but use them according the combinations which seem suitable to you. When searching the Internet, it is easy to find too many documents and ones that are not appropriate. We recommend adding a term such as: school, students, experiment, test, classroom, homemade, building, making, homework, science fair, science project, lesson, lesson plan, hobby.
WARNING: Some of these experiments can be dangerous. When children are doing them, an adult must always be present to avoid any damage or harm. In any case, we do not assume any liability. As for the safety and the liabilities, we recommend you to read our Warning page.
Have a good time!
|
ANALYSIS OF THE SOIL
COMPOSITION The soil is composed of many different sized particles. With this simple experiment you
can separate the main components of the soil and evaluate their proportions. |
| SOIL MOISTURE AND
PERMEABILITY The composition of the soil has important consequences on its permeability towards water
and on its ability of keeping it. In a flower pot does it retain water or does it drain
well. With this experiments you will be able to evaluate the characteristics of some basic
components of soil. |
|
EROSION OF THE SOIL![]()
This experiment is as simple as it sounds.
1 Take some soil, make a little mountain at least 20 cm high, with steep walls and
a flat top. With a hose, water it down, avoiding direct jets (figure 3). You will see the
borders slide down and the heap of mound of soil progressively take the typical profile of
a true mountain. Observe and describe what happens during this artificial rain.
2 - Redo the test. This time insert an impermeable clay layer on top of the mountain and
then some regular soil: the lake of water on the clay layer should give rise to a sudden
landslide of liquid mud.
3 - Build another mountain with stones, clay, sand and ground in different positions.
Observe the different behavior of the materials towards the artificial rain.
4 - Sow grass on a new "mountain" and pour water on it after the grass has
grown.
http://www.kenyon.edu/projects/farmschool/nature/eropro.htm
Erosion Project
http://spider.silsoe.cranfield.ac.uk/iwe/erosion/
Erosion and sedimentation
Internet keywords: soil erosion
| SOIL PROFILE The ground is modified and enriched by the plants growing on it. Making a section of soil
(figure 4), you can observe different layers: a layer rich in organic matter, the humus
(O); a layer rich in roots and living organisms (A); a layer less rich in life, but still
used by roots (B) and an inert soil (C). |
|
![]() |
HYDROPONIC SYSTEMS Hydroponics is a method of growing plants without soil. Plants are simply placed in water
with the necessary chemicals. As plants are deprived of support from the ground, they will
fall down. To support the plants, an inert material like expanded clay pebbles is used in
a pot in the tank (figure 5). Before inserting a plant in a hydroponic system, you must
carefully remove all soil from the roots otherwise bacteria will putrefy them. |
BUILDING AQUARIA AND TERRARIUMS![]()
Making an aquarium or a terrarium is not a complicated thing. Learning to build them is
very useful for those who are fond of breeding animals, observing them, taking pictures
and movies. You can use an aquarium to breed fish, amphibians, protists, algae, artemia,
shrimps, etc. You can use a terrarium to breed many species of animals, but avoid raising
species which suffer in captivity. Aquaria and terrariums can be used also to take pictures
of animals temporarily taken from their environment.
In their simpler form, acquaria and terrariums are simple glass boxes enclosed on 5 sides
and which can be provided with a lid. This simple container is suitable to breed
amphibians and as a terrarium. Aquaria for fish require a compartment for a filter, a pump
for water circulation, another pump for air, a thermostat, lighting, etc. We'll deal of
the simplest aquaria.
How you can build an aquarium? In first you have to make a drawing. The bottom glass has
to be surrounded by the other four walls and it has to be the thickest. The thickness of
the plates has to be proportioned to the size of the aquarium. Avoid building too wide,
and more importantly, too high an aquarium. The pressure of the water increases and could
unglue the plates. After having drawn the acquarium you have to cut the glass plates by
means of a glasscutter. To do this keep the glasscutter vertical and push down with force
while you move it along a ruler. This operation require practice, so use some scrap pieces
until you have the necessary manual ability. It is important you use a sharp glasscutter,
kept in oil to avoid rust. Before gluing the slabs, you have to round off the edges with
sandpaper in order to remove their sharp edges. With some acetone, clean the slabs where
the silicone rubber will be deposited. As the acetone is toxic, work outdoor or in a well
ventilate piece. Use high quality transparent silicone. To keep the internal walls free of
excessive glue, on the slabs and near the gluing positions, place stripes of sticking tape
(figure 6). When the silicone is cured, remove these stripes and the excess glue.
LOOK OUT!: handling and cutting glass is a dangerous
operation which has to be made only by adult people wearing gloves and a heavy apron. A
way to elegantly solve this problem is to order plates. A hardware or building supply
store can help. Never move aquaria and terrariums containing water or stones, move them only
when they are empty. Do not place aquaria in positions where a water leak could damage
something below them, for example over electrical devices or sockets, and books. Only
adults should handle glass-made aquaria or terrariums. Give children transparent plastic
tanks. Do not keep dangerous or rare organisms. Do not breed and most important, do not
free species which do not belong to your environment! Do not free sick animals or plants.
http://www.thekrib.com/TankHardware/
Building Tanks
http://www.hobbyschool.com/reef/Shopping/diy.htm
Reef Aquarium Guide
http://www.multimania.com/cybaqua/plau/tout.shtml
CyberAqua (list of links)
Internet keywords: aquarium glass homemade.
Ponds are among the richest and the most interesting natural environments to observe. To
make a pond it is sufficient to have a garden or, a meadow or a wood near your home. It is
not necessary to be large, a square meter (9 square feet) of surface is sufficient, but
two(18 sq. ft.) are better. Find a shady position in the garden. Dig a hole of about 2
square meters, 50 cm(2 feet) deep. At least one side, the border has to gently slope down
to allow to little animals to enter and leave, for hedgehogs and opossums to drink and to
birds to bath without being too deep. Put some sand in the bottom. Leave the grass on the
side. Bare roots are okay. Waterproof the hole with a tarpaulin of white PVC. Why white?
Because you can see aquatic animals better when they come near the shore. Cover the border
of the tarpaulin with the grass sod. Allow the tarpaulin to extend for at least 40 cm (16
inches) beyond the sloping shore. In this position you can keep the water in such a way to
create the typical conditions of a marsh. Fill up the pond with tap water and shovel some
sand or soil in the bottom: they will benefit the aquatic plants. Go to a natural pond or
marsh and collect some aquatic plants. If it is possible, carry some gallons of water from
the pond and pour them into your puddle, which will be enriched with microorganisms,
algae, and animals, which live in ponds. In few days, your little pond will become green
with algae and very rich of protozoa. Rapidly dragonflies will come to lay eggs, boatflies,
coleoptera and aquatic spiders also will come. In the spring, frogs and newts
will come to lay eggs. The observation of the life in a pond is fascinating. You can
remain for hours watching the organisms, which live in this ecosystem. Buy books to
recognize the organisms that live in the ponds. See bibliography (5, 6). These texts will
also give you also useful information on the habits of these plants and animals. For an
exercise, note your observations in a book, glue pictures, and sketch drawings. Every
year, during the fall, you should clear out the pond. Shovel out the stinking mud, wash
the tarpaulin, or changed it if it leaks, put some tap water, winter rain will supply the
remaining part. In spite of what shopkeepers will tell you, your pond does not need pumps
to circulate water, nor aerators, nor falls, nor fountains, nor anything else. The pond is
better to be as natural as possible. Little ponds of private gardens are very important to
amphibians. Avoid introducing fish. They will eat the eggs of the amphibians and the
tadpoles. Moreover, the newts will keep the pond free from the mosquito larvae. When there
are tadpoles, your pond will be visited by water snakes, with difficulty you will notice
of them!... and --- don't be frightened: they are harmless!
http://members.aol.com/marylady/pondpals/resource.htm
Pond Links
http://www.citlink.net/~missy/pondlinks.htm
Pond Links
http://www.angelfire.com/ri/skibizniz/microhab.html
Multiple Microhabitat Pond Microcosm (good cross section of a pond)
http://pionet.net/~kuseld/pond.htm
A Large Pond
http://home.flash.net/~blhill/pages.aux/pond/construction.html
Pond Construction
http://www.exit109.com/~gosta/pond.sht
Building a Pond
http://www.ruf.rice.edu/~bioslabs/studies/invertebrates/pond.html
"Pond" Cultures of Microscopic Invertebrates
Internet keywords: pond building homemade.
BIOSPHERES AND ECOSPHERES![]()
Normally, the term of biosphere means the part of our planet that hosts life.
Instead, the term ecosphere means the all of ecosystems. Lately, these terms are
used also to mean the closed, artificial ecosystems. They exist as different kinds of
ecosystems like these and with different size, for example a quite large one has been
built in order to study the ecological equilibrium of the Earth and to check the
possibility of building permanent, autonomous bases in the future on the Moon, Mars, in
space. There are other smaller artificial closed ecosystems, like the ones contained in a
glass sphere and marketed under the improper name of biospheres or ecospheres.
Plants consume carbon dioxide and produce oxygen; on the contrary animals consume oxygen
and produce carbon dioxide. Plants produce organic substances, which are eaten by animals;
in turn animals produce organic fertilizers for plants. What is the general balance of all
those exchanges? What happens in a small sealed, ecosystem? Our planet is a closed
ecosystem. It may not seem small, anyway it is essentially closed. Earth does not exchange
important amounts of anything with space. As time goes by, billions of years, slowly our
planet has acquired an accumulation of oxygen with enough concentration to support
animals. Today, given that it oxides rocks oxide exposed by erosion and animals that
breath, this gas is in equilibrium. The same is true for small, closed ecosystem. This
cycle of oxygen can stay in equilibrium for a long time, even many years, keeping both the
plants and animals alive. The important thing is to obtain an equilibrium among the
mineral substances, the plants, and the animals which compose them. Then here with a glass
sphere like the one for red fish (figure 7), you can make a "world in a bottle"!
To make your own, you can also use a colorless glass demijohn. Put in it a little soil
and/or sand, some stones, some protozoa, algae, aquatic plants, some animals like waters
snails or tiny crustaceans like water fleas, little shrimp, and fill with water leaving
some air. Then seal the container. Put this little world in the light, but without direct
sunlight. Keep a record of how the system evolves. Observing how life continues for years
inside this limited space is fascinating and educational. In fact, these closed ecosystems
are a model of the Earth. Now, imagine that a particularly active shrimp eats all the
algae of its biosphere? What would happen? Probably, the oxygen would be subtracted by
many processes, and since there is no more algae to produce more, the shrimp would die,
suffocated. The fragility of these little ecosystems makes us understand how fragile our
ecosystem is... but it doesn't seem to worry many people.
http://lifesci3.arc.nasa.gov/SpaceSettlement/teacher/lessons/bryan/ecosys/
Closed Ecosystems
http://www.angelfire.com/ri/skibizniz/
Microcosm (theory)
http://www.geocities.com/RainForest/3918/mce.html
Research on Materially Closed Ecosystems
http://www.eco-sphere.com/ Ecosphere
Associates, Inc.
Internet keywords: closed ecosystems microcosm.
GARDEN IN A BOTTLE![]()
The bottle garden is a close relative of the biosphere: a tiny garden growing inside a
bottle, a glass sphere, or a demijohn. The main difference is that soil is the main
component not water. The container can be kept sealed or opened like a terrarium. Ours
will be more for just plants whereas the terrarium may have animals. These gardens in a
bottle, can be cured and perfected as a system, they are also very decorative, in fact you
can treat them as a bonsai with not only a single tree, but whole landscapes. A carefully
chosen stone becomes a rock, a small plot of moss represents a great prairie. A contorted,
little plant is now a hundred year old tree. Maybe a marsh wetlands with peat moss,
mushrooms and ferns is more to your liking. Maybe appropriate succulent plants with sand
and rocks for a vast desert landscape. The choice is yours. There is no rigid rule about
being either an open or a closed garden. It maybe useful to keep the lid on to retain
water. Or eventually, the plants grow up and need to hang down the outside.
If the container is always sealed, the challenge becomes quite demanding. In fact, it then
is necessary to obtain an equilibrium between plants and animals in order to keep an
effective cycle of substances and energy, but if this is difficult in a predominantly
water environment, it is even more difficult in a just moist environment. So, the garden
has to contain a moist soil, plants, little animals like terrestrial isopods (i.e.: sow
bug, pill bug), earthworms, etc. Plants have to be resistant to high moisture and have a
small size and limited growth. To avoid roots rotten, you can also try to refer to
hydroponics and substitute the ground with small sized expanded clay or with gravel. In
this case you will have more difficulties in hosting animal species, so it will have to be
left open. It is important you place your garden in a cool and well illuminated place, but
away from direct sunlight. Open or closed, a bottle garden is a fascinating thing, and the
idea itself of a little and self-sufficient world is fascinating as well. There are people
so fond of bottle gardens they work at them a long time, taking care of them using long
and thin tools and to observe these environments till they imagine to be one of their
inhabitants.
Then choose among these main options:
1 - Opened bottle garden, containing moist ground, plants and possible little animals. It
is suited for people who love taking care of gardens and who have a flair for
the architecture of little wide spaces.
2 - Opened bottle garden, prepared in hydroponics and containing plants. It is suited for
those who tend to forget to water their plants.
3 - Sealed bottle garden, holding moist soil, plants, and some little animals. This
exercise is suitable for people who are keen on biology and scientific research. They will
have to find appropriate plants and animals suitable for a sealed ecosystem and will have
to achieve the necessary conditions for a long survival. This research, bibliographic in
part and experimental, will keep students happily busy for long time.
The educational value of these little ecosystems is evident. They can be carried out even
in a school, where the teacher will be allowed to illustrate their characteristics to
pupils and encourage interesting discussions. In the web sites below, you will find
important practical information in building your bottle gardens.
http://www.ville.montreal.qc.ca/jardin/en/info_verte/feuillet_terrarium/feuillet_terrarium.htm
Terrariums : Miniature Worlds in a Bottle!
http://www.bbc.co.uk/gardening/howto/backtobasics/bottle_garden/index.shtml
BBC online, how to gardening, bottle garden
http://forums.gardenweb.com/forums/load/contain/msg071125216319.html
Forum
http://www.feminin.ch/jardinage/Bouteille.htm
Un jardin en bouteille
http://www.ville.montreal.qc.ca/jardin/info_verte/feuillet_terrarium/feuillet_terrarium.htm
Le terrarium : Un monde miniature dans une bouteille!
Internet keywords: garden bottle jar, jardin bouteille bonbonne.
RECYCLING![]()
Industrial societies manufacture huge quantities of goods. Once used, these products are
cast away. Hence, on one hand we substract great amounts of resources from nature, on the
other hand we make enormous heaps of garbage which pollute the environment. If you think
of it, a lot of materials which are discarded could be reused. In fact, metals, plastic
and glass can be used in manufacturing new items. Paper and fabric can be turned back into
pulp and fibers, and reassembled into new products. Organic wastes of kitchen, usually
made of vegetable and animal substances, and garden material, can be composted and used as
fertilizer. Wood can be burned, yielding electrical energy, heat and carbon dioxide which
will be used by other plants to produce more wood. Recycling of waste materials has the
double advantage of reducing the need for raw materials, and the amount of rubbish.
Every day for a month, separate the different kinds of scrap of your home, weight them and
write out a list. At the end, estimate the amount of materials which can be recycled,
evaluate the recycling and waste management program of your community. Highlight the
problem areas of the system. Assess the problems created by not easily recyclable things,
and by the polluting ones: paint cans, batteries, oils, detergents, medicines, etc. Bring
out the difficulties and the questions facing particular problems in the recovery of
wastes. Ask the authorities of your city. Write a guide for families on how treat wastes
in the right manner. Show this guide and the report of your research to your teacher.
http://www.edf.org/issues/Recycling.html
Environmental Defense, Recycling
http://www.deq.state.la.us/assistance/recycling/index_school.htm
Recycling - At School
http://www.obviously.com/recycle/guides/hard.html
Recycling Obscure Materials
http://grn.com/grn/ Global Recycling Network
http://www.obviously.com/recycle/
The Internet Consumer Recycling Guide
http://www.plasticbag.com/ Plastic Bag
http://www.recycle.net/recycle/sites/index.html
Recycler's World
Internet keywords: recycling.
COMPOSTING![]()
In nature, the remains of dead organisms, that is vegetable and animal tissues, become the
food of other organisms like little mammalians, insects, protists, plants, mushrooms, and
bacteria. For billions of years nature recycled biological substances instead of letting
them accumulate in useless heaps and this has helped to maintain our planet, keeping it
clean and hospitable for the innumerable generations of species which have lived on it
until now. While primitive men and countrymen recycled their organic scraps, until not
long ago in the modern cities these wastes have been carried to large dumps where they
pollute the environment and water tables. If you have a garden, you can perform a simple
and educational experiment, which will allow you to recycle your organic wastes.
Build a container large enough to hold the organic wastes of your garden and kitchen. Some
old lumber will do. Leave a space of about a centimeter (half an inch) between the boards
for air circulation. Throw your organic waste in the box, eg: grass cuttings, fallen
leaves, and the remainders of the kitchen. Avoid meat. Cover all with a shovel full of
soil, and water them. Many organisms will rally to feast and decompose these substances.
Among them there will be earthworms and mostly bacteria. Their work is such that some heat
will be generated. At the subsequent Spring, empty the container. You can use the compost
you have obtained by spreading it on the kitchen garden and in the garden. You can also
use in flowerpots, just sift out the large parts first. Examine which organisms, besides
the bacteria, live in the composter. You will find earthworms, terrestrial isopods,
millipedes, etc. Describe the ecosystem of the composter.
http://www.vegweb.com/composting/
Composting Guide
http://www.mjjsales.com/articles/how-to-compost.html
Basic information about home composting
Internet keywords: compost composting.
| VOLCANO Collect some small wooden sticks and some dry paper. Make a cone of about 30 cm (one foot)
tall with the sticks and paper. Put humid sand and soil around the cone to make up a
little mountain. Now, dig a tunnel in the base of the mountain until you reach the sticks.
Light the paper and you will see the volcano to give out smoke and some flame (figure 8).
You can find other volcano models in the following site: |
![]() |
RECOGNITION OF SMELLS![]()
Who said that man does not have a good sense of smell? When people go hunting, men of
certain tribes use the sense of smell to pursue the prey. Why us, men and women who live
in cities, do not use the sense of smell any more? Probably this is due to the fact we are
so surrounded by stinking gas, such as car exhaust, that often we would rather hold our
breath than be sensitive to smells. In a city it is so difficult to feel like smelling
that we have practically lost the use of our sense of smell. This is a true pity, because
the sense of smell is a very ancient sense which directly communicates with the memory
without passing trough the linguistic areas (which cleverly mistakes everything). A scent
recall memories like nothing else can do. The sense of smell could also allow us to
recognize the food which is served us and to evaluate its quality. Have you ever noticed
that a cat, even if it stands at the foot of the table, knows very well what we are
eating, even without seeing it? The sense of smell would allow us to recognize people, but
isn't done for this... yet dogs and cats recognize us mainly from our scent. Our skin
smells, it has a personal smell which often we kill under a layer of perfume. Yet
our bodies, the body of males and females, communicate each other even by means of natural
scents. Pheromones are suspected to spark off the so-called "love at first
sight". Smells are able to get us such beneficial sensations that they are at the
basis of the aromatherapy, a method for recovering the psychological equilibrium.
Hence, it should be important to recover this forgotten faculty. You can start this
recovering by means of some simple experiments which can be done even in a nursery school:
1 - Collect a series of natural perfumed objects, such as: rosemary, celery, onion,
carrot, garlic, ground coffee, chocolate, lemon, orange, tangerine, lemon verbena,
mint, thyme, sage, cinnamon, nutmeg, clove, violet, carnation, rose, cut grass. Put each
of them in a little jar. Call one child at a time and blindfold them. Now, ask them to
recognize a scent, one at a time. Fill in a form and give a prize to the three best
"noses".
2 - Another exercise consist of sniffing one another with opened eyes and then, after
being blindfolded, try to recognize the friends by the sense of smell.
These simple experiments are able to activate and keep alive the sense of smell of a child
perhaps for all his life.
Internet Keyword: smell aromatherapy student.
COLLECTION OF ANIMAL TRACKS![]()
After a shower, the soil is soft and the animals which walked there, leave tracks. By
means of plaster, you can obtain the mould of these tracks and make an
interesting collection (figure 9). The experiment is very simple: it is a question of
bringing a little plaster in dry form, some water, a bowl to mix the plaster,
and a spoon to stir. But, to which animal belong the tracks you have picked up? From here
start the research of information. They exist books which give the picture of the tracks
of many animals. Moreover, recognizing the animal which left the track is not sufficient:
it is necessary to know something of its behavior, etc. From the simple collection of
tracks you will be curious to know the animals of your land. Our article: "Environmental Exploration and
Protection" provides you some indication on this topic. This experiment will open
your eyes so you can observe the territory around you when you walk in natural
environments with more attention. Plaster can be used also to obtain the mould of fruits,
barks and other natural objects. From the cast you can also obtain the original shape.
|
http://www.freeweb.pdq.net/headstrong/track.htm
Casting animal tracks http://www.gov.ns.ca/natr/wildlife/conserva/03-03-5.htm Collecting Animal Tracks http://140.211.62.101/lessons/collecting/animaltracks.html Animal Tracks http://eduscapes.com/42explore/animaltracks.htm Animal Tracks (links and pictures) Ricerche in Internet: animal tracks plaster cast. |
|
SEEDS GERMINATION![]()
In its simpler form, this experiment is particularly suited to elementary schools.
1 - Put some beans in a little jar containing some moist cotton wool. Keep the jar closed
to maintain the humidity. Every day pull out the cotton and observe the state of the seeds
and measure the length of their roots.
2 - Students in junior high schools or high schools can try to evaluate the influence of
parameters such as temperature, light and nutrients on the speed of germination of the
seeds. If seeds are placed in gelatin, it is possible to observe the germination without
extracting them from the jar.
3 - You can also collect seeds of different plants and determine their vitality (percent
of seeds which germinate) as a function of time to harvest.
http://kabt.org/Labs/Seeds.htm
Exploring Seed Germination
http://www.rohmhaas.com/company/plabs.dir/htmldocs/germinateseeds.html
Germinating Seeds on Gelatin
http://www.sci.mus.mn.us/sln/tf/books/great.html
The Great Seed Mystery For Kids
http://versicolores.ca/seedsoflife/ehome.html
The Wonderful World of Seeds
Internet keywords: germination seeds student.
SOIL ECOSYSTEM![]()
An ecosystem consists of the whole community of living organisms (biocenosis), the abiotic
component of a certain environment (biotope) and their relationships.
The relationships essentially consist in a flux of substances which pass from the
non-living components to living ones and in a flux of energy which passes from the
photosynthetic organisms (plants) to the herbivorous animals, then to carnivores. The
wastes and the dead organisms are then decomposed by the micro-organisms which brake down
the substances back to simple components, in a full cycle.
1 - With a shovel in a field or in a wood, dig a square hole of about half a meter (1 1/2
feet) square and about 40 cm (18") deep. Describe the non-living components of the
soil and all forms of life you find: roots, earthworms, snails, centipedes, spiders,
crickets, etc. To complete the description of the ecosystem of the soil, look for
information on the role of each of these organisms and the relationships with the other
forms of life of this environment.
2 - In similar way you have studied the soil ecosystem, you can analyze other ecosystems
such as the ones in a forest, pond, shore, or desert.
G. and L. Durrell (2) can be useful, or there are many other books on this matter.
http://www2.nrcs.usda.gov/teachers/soil_ecosystem.htm
An Illustration of a Soil Ecosystem
http://www.cciw.ca/eman-temp/reports/publications/sage/sage9.htm
Protocols for a Soil Ecosystem Approach for Characterizing Soil Biodiversity
Internet keywords: soil ecosystem.
RAISING PLANTS AND ANIMALS![]()
(General instructions for the different animals will be described later.)
Breeding living being is a fascinating and educational activity. The organisms you can
raise are numerous: harmless bacteria, yeast, protozoans, rotifers, fresh water sponges,
hydra, planaria, vinegar eelworms, earthworms, enchytraeus, tubifex, chironomids,
nematodes, little fresh water shellfishes (daphnia, cyclops, etc), artemia, isopods,
centipedes, millipedes, snails of water and earth, bivalves, bugs (drosophila, flies,
moths, tenebrio, crickets, praying mantis, etc), aquatic bugs (boatfly, whirligig, larvae
of dragonfly, nymphs of aquatic bugs as those that are found under the stones of a river),
colonies of ants, prawns, fishes, amphibians, reptiles, birds, small mammals. Besides, you
can raise microscopic and unicellular algae, fresh or salt water algae, aquatic plants,
terrestrial plants of all types (grass, flowering plants, succulent plants, orchids,
carnivorous plants), mold, mushrooms, lichens, musks, ferns, etc.
To raise these with success you have to reproduce the best possible conditions of the
natural environment where the organism usually lives, to feed it in a suitable manner, and
to keep away their natural enemies. The texts listed at the end will supply you with the
necessary information for the preparation of media for the microorganisms, the culture
medium for the plants, the food for the animals you will breed.
We want to advise you against raising exotic species which inevitably contaminate the
local environment. In fact, after the first enthusiasm of ownership, people often get
tired of taking care of it and after a while they want to get rid of it. Since they do not
want kill it, they free it outside. In this way they cause big problems to the natural
ecosystem. If you want to get rid of a being which does not belong to your environment,
deliver it to an environmental organization. Breeding local species is much less harmful.
Also you should avoid raising wild and complex animals for a long time because they suffer
living in a limited space: they are born to be free with lots of room. You should keep an
animal in a terrarium only for the time to observe it and take some pictures. Smaller,
simpler creatures like insects and mollusks have fewer problems. Moreover you must avoid
breeding rare, endangered, or threatened species. Finally, avoid introducing sick animals
or diseased plants into the environment.
http://www.flinnsci.com/homepage/bio/livemat.html
Live Material Care and Feeding
http://www.ee.pdx.edu/~davidr/discus/livefoods/cultures.html
Food and Medicine - Live Cultures
Bibliography: 1 cap 9: Maintaining Organisms for Laboratory and Classroom Activities. 3
Classroom Creature Culture: Algae to Anoles.
BREEDING OF PROTISTS![]()
Whoever has seen these organisms knows how charming they are.
Click on the image to your left to observe a short movie of a
ciliate. Click a second time to stop it. If you own a compound microscope you will
find it very useful to have a little pond, an aquarium or at least a glass to raise a rich
community of protists. You can also try to breed just a single species.
1 - Generic breeding: after a while, a colony of algae and protozoa or many other species
will form in any pool of water. So, to obtain a rich culture of microorganism, you can
fill a transparent container with tap water and place it outside, but avoid direct
sunlight. To speed the emergence of the protists and to supply them food, add a little dry
grass and leaves. For a container, you can use a simple glass jar, a plastic basin, or an
aquarium.
2 - Selective breeding: if you are fond of protists you may find it very interesting to
selectively raise them. You will need a container for every species. Place a suitable
culture medium in each container. Normally, a culture medium means some water with
appropriate micronutrients needed by the protists. A simple medium for general use in
growing microscopic algae is made of tap water with a handful of soil boiled for some
minutes. Let this solution cool and settle for a day, this also allows oxygen and carbon
dioxide to reenter the solution, then filter it. You can find recipes for more special
media in texts devoted to raising protists or at websites of companies which sell the
microorganisms. Some are listed at the end. So put the newly separated individuals in a
jar. The jar will have to contain a suitable culture medium and will have to be closed in
such a way to allow air to enter, but not dust, which could carry spores of other protists
and bacteria. Normally a larger lid then necessary, which just sits on the top or a film
of cellophane with some pinholes will work.
How do you obtain the species to be raised? One method is to buy them commercially. Be
sure to buy a harmless species.
Another solution is to isolate the species from the natural environment. Collect a sample
of water, possibly with algae or soil from an interesting puddle of water. Place this
material in a petri dish. Use a stereoscopic microscope and a thin pipette to collect the
protists which interests you and place them in a jar. If you want to select the
individuals of a single species, temporarily put the protists of one species into their
own petri dish until you have collected all of them and placed them with their fellow
species. Then you can transfer the colony to a more permanent home. Bear in mind that some
bacteria are necessary because they produce some vitamins the protists aren't able to
make, also bacteria are the food for many of the protozoa.
3 - An interesting research project is to adjust the culture medium for a given species.
Try to make changes in the composition of the colony. To do this, prepare many test tubes
with the same medium and with about the same density of protists. After having modified
the composition of the medium in different ways for each test tube, you can evaluate the
effect of each change by counting the number of individuals in a drop of culture, every
day. Clearly the positive changes will give make more crowded cultures.
Especially if you raise algae, measure the value of the pH in your cultures. If necessary,
neutralize the solution with baking soda or with vinegar, depending if the pH is acidic or
base.
LOOK OUT!: In these experiments, need the
help of a biologist to avoid culturing dangerous microorganisms. Even with help, keep the
cultures only for a short time, wash your hands, wash and disinfect all tools which have
been in contact with the cultures.
http://www.bio.utexas.edu/research/utex/
UTEX, The Culture Collection of Algae. Information on algae and culture mediums
(choose: "Media recipes").
http://www.BSSPweb.freeserve.co.uk/bsspsite2/frames.htm
Culture Collection of Algae and Protozoa
http://megasun.bch.umontreal.ca/protists/pcco.html
Protist Culture Collections (list of sites. You can find the composition of
mediums of culture also)
http://www.science-projects.com/safemicrobes.htm
Micro-Organisms for Education
http://www.life.umd.edu/classroom/bsci485/lab.html
Laboratory Methods
Internet keywords: protists algae culture media medium.
RAISING POND ORGANISMS IN AQUARIUM![]()

As we have said, ponds are one of the richer and more interesting natural environments to
observe. Anyway, it is not always easy to follow the movements of its inhabitants because
often they head for the bottom or in another hidden place. The reflection of the sky on
the water surface and the presence of floating algae make them harder to see. It is
possible to solve most of these problems by creating a pond in an aquarium. It is a
question of simply putting water in an aquarium, collected from a natural pond and adding
some animals and plants collected in the same environment like: water snails, little fresh
water shellfishes, boatflies, whirligigs, larvae of dragonfly, nymphs of aquatic bugs,
prawns, etc. Every week, you have to scrape off the algae from the inside walls of the
aquarium so you can see into it. You have to exchange a third of water with tap water. It
is best to let the tap water sit for a day before using. The observation of the life
inside this little pond will be simply fantastic. You will see the animals and the plants
in an easy, well lit, and at close range. This view is nice enough for pictures and
movies. Try to describe the behavior of the animals living in your aquarium, the
interactions among them and with the environment where they live. Add pictures and
drawings to your work.
http://www.ruf.rice.edu/~bioslabs/studies/invertebrates/pond.html
"Pond" Cultures of Microscopic Invertebrates
http://www.cis.yale.edu/ynhti/curriculum/units/1992/5/92.05.07.x.html
Pond Ecology
http://library.kcc.hawaii.edu/CTSA/publications/Artemia.htm
Hatching of Artemia
BREEDING AMPHIBIANS IN AQUARIUM![]()
Breeding amphibians is very educational because it allows people to follow the development
of the animals from a egg to the metamorphosis. Collect some frog, toad or newt eggs from
a pond. Put them in an aquarium with water collected from the same pond or tap water that
has stood a week. This period of rest is necessary to allow chlorine to dissipate and to
allow the water to enrich with microorganisms, which will be food for the tadpoles.
Observe and describe the development of the embryo and then that of the tadpole. Describe
the shape of every species, noting distinguishing characteristics and marks. These will be
helpful in identifying them. In the beginning, these animals feed on microorganisms in the
water. When their legs appear, and perhaps a few days before, it is necessary to give them
some boiled and minced spinach or better some boiled and squashed string beans. A snail or
an earthworm cut into pieces will supply useful proteins to them. The larvae of newt are
carnivorous and feed on water shellfish and mosquito larvae. After their metamorphosis
they are happy to find small worms and pieces of earthworms, but this is also the time to
free them. Take them back where you gathered the eggs. It is possible also to raise adults
in a terrarium, but we advise you this is a difficult and demanding enterprise given the
necessity of breeding flies other creatures to feed them.
http://www.girosi.com/reptiliaamphibia/siteframe.htm
Reptilia & Amphibia
http://www.wnrmag.com/stories/1996/apr96/frog.htm
All About Amphibians
Internet keywords: raising breeding amphibians aquarium.
CULTURE OF VINEGAR FLIES![]()
Drosophila, best known as vinegar fly or fruit fly, is the little fly you see flying
around vinegar and on fruit during the fall. Why raise vinegar flies? To observe their
development, to observe the chromosomes of their salivary glands during division, to
perform experiments on genetics, finally as food for amphibians that have just completed
their metamorphosis. In this case it is necessary to breed a species that can't fly. You
can obtain individuals with vestigial wings (wings which are not fully developed)
at a university Biology or natural sciences department.
Culture medium recipe for drosophila: water 83 ml, agar-agar 0.8 g, sugar 5 g, brewer's
yeast 10 g, alcohol 1.3 ml, nipagin
0.25 g. Nipagin M is used as a preservative in foods and cosmetics, like agar-agar, you
can buy it at the stores that sell science items for laboratories. Mix the yeast and the
sugar, add agar-agar and water and simmer for 3 minutes. Turn off the heat. Dissolve the
nipagin in alcohol and add to the rest when it has stopped smoking. Mix and let it set.
You can find other recipes at the following websites:
http://ceolas.org/fly/intro.html A
quick and simple introduction to Drosophila melanogaster
http://www.intellweb.com/gcka/flies1.htm
Fruit Flies - Drosophila melanogaster
http://www.thebomb.clara.co.uk/drosophila.html
Drosophila Culture (how to culture flightless fruit flies)
http://www.accessexcellence.com/AE/AEPC/WWC/1994/observing.html
Observing the Development of Drosophila in Apple Juice Agar
http://www.accessexcellence.com/atg/released/0083-BettyAnnWonderly/lab1.html
Drosophila Genetics Lab I
http://www.ifas.ufl.edu/~entweb/amer_bio.htm
A bibliography for an insect field biology course
http://www.ac-toulouse.fr/svt/droselev.html
La drosophile (in French)
Internet keywords: drosophila culture -cells, wingless fruit flies vinegar fly.
BREEDING EARTHWORMS![]()
Raising earthworms is an interesting activity for children in elementary and junior high
school. For people who own amphibians, it is an important source of food. Making such a
farm is very easy. You have to simply make a heap of soil and mix some cut grass and other
kitchen vegetable scraps and fruit. This culture does not need special care, except for
keeping it humid, watering at least every two days in summer. Once in a while, add other
vegetable waste and every two weeks mix the heap with a shovel. You can observe
earthworms' digestive and circulatory systems by dissecting them.
Internet Keyword: earthworm breeding vermiculture.
|
CULTURE OF
BUTTERFLIES The beauty of butterflies makes their culture particularly charming. Do not believe you
will immediately have these beautiful insects, in fact for most of the time you will have
to raise caterpillars and preserve pupae. Only at the end will you have butterflies. To
culture these pretty insects, you first have to read texts about lepidoptera and practice
in the field. In this way you will learn how to find butterfly eggs, to raise caterpillars
and to keep pupae, waiting for the butterfly to emerge. Usually, butterflies prefer one or
a few kinds of plants called hostplants. Caterpillars feed only on these plants and it is
only on these that the adult female lays her eggs. So, in order to find the eggs of a
given species of butterfly it is necessary to know which are its hostplants and when they
lay eggs. |
REGENERATION OF ANIMALS![]()
Some animal can be cut in half and from each part will grow a complete individual. Try to
cut in half a planaria, a hydra, a tubifex. Keep these "pieces" in
their natural environment and you will see they will regenerate the other part.
PRODUCTION OF OXYGEN BY THE PHOTOSYNTHESIS![]()

Photosynthesis occurs in the chloroplasts of the vegetable cellules. In this process carbon
dioxide and water are combined to produce sugar and starch. In order to allow this
synthesis, some energy from the sun is needed. Plants use these substances also to make
proteins. In this way, plants are able to produce the substances they need, whereas
animals, to obtain them, have to feed on plants or on other animals. As "waste"
or byproduct of photosynthetic process there is oxygen: 6CO2 + 6H2O
+ energy = C6H12O6 + 6O2.
In order to show the production of oxygen during photosynthesis, you can use a water
plant. As shown in figure 15, immerse the plant in a tankard of water, cover the plant
with a transparent funnel and put a test tube on the funnel. Make sure at the beginning
there are no air bubbles in the tube. Expose the plant to sunlight and after some time you
will see bubbles of oxygen gather on the test tube then collect to form a larger bubble.
http://gened.emc.maricopa.edu/bio/bio181/BIOBK/BioBookPS.html
Photosynthesis ***
http://gened.emc.maricopa.edu/bio/bio181/BIOBK/BioBookTOC.html
Online Biology Book
RESPIRATION IN PLANTS AND ANIMALS![]()
|
|
In some way, respiration can be considered the opposite of the photosynthesis: the
organism demolishes sugars to obtain the energy necessary for its biochemical processes
(figure 16). Hence, the energy organisms use is supplied by the Sun in the form of light
during photosynthesis. The process of oxidization of glucose happens through many stages
and can be summarized in the following reaction: C6H12O6 + 6O2 = 6CO2 + 6H2O + energy. The
final stages occurs in the mitochondria as energy, carbon dioxide, and water are produced.
How can you see carbon dioxide, coming from the mitochondria? When breathing, plants and
animals emit carbon dioxide and water vapor.
1 - The presence of carbon dioxide in the breath of animals can be shown by having a boy
or girl blow into a solution of lime water Ca(OH)2. In presence of carbon
dioxide lime water becomes milky. Buy the lime in a hardware or paint store.
2 - As shown by the figure 17, place a little animal inside a plugged flask. As time
passes, part of the oxygen will be consumed by the respiration process, and the same
number of molecules of CO2 will be produced. In this way, there will not be any
change in the volume of the gas contained in the flask. To show the consumption of oxygen,
it is necessary to subtract the carbon dioxide. To do this, you can use a piece of paper
soaked in a solution of 10% of potassium hydroxide (KOH). In order to increase the surface
of the sheet, fold it. Instead of this sheet you can use a tube test stuffed with cotton
wool soaked with the same solution.
To highlight the reduction of volume of the gas inside the flask, insert a pipette with a
capillary tube on the end through the plug of the container. Add a drop of colored water
with a trace amount of detergent. The movement of this drop, in reference to a ruler, will
give you information on how much oxygen is consumed. The second tube which crosses the
plug will be useful to you to set the stained drop, but during the experiment it has to be
closed.
Pay attention to not suffocate the animals. You can also make this experiment with
protists, yeast, and bacteria. In the case you will want to study the respiration of
plants or algae, you will have to keep the flask in the dark to prevent photosynthesis.
With these tests you can measure the consumption of oxygen in the living organisms. As the
temperature also affects the volume of the gas, in these tests it is important you keep
the temperature constant. Pay attention when handle the potassium hydroxide because it is
caustic. Safer to buy the solution already made than mix it yourself. Avoid touching it
with bare hands and particularly protect your eyes. Do not allow any animals you use for
the tests to be come in contact with it either. When using this substance, children must
be supervised by an adult.
http://gened.emc.maricopa.edu/bio/bio181/BIOBK/BioBookGlyc.html
Cellular Metabolism and Fermentation
http://gened.emc.maricopa.edu/bio/bio181/BIOBK/BioBookTOC.html
Online Biology Book
Internet keywords: respiration mitochondria experiment.
ALCOHOLIC FERMENTATION![]()

Fermentation is a "respiration" which does not use oxygen and which for this
reason is called anaerobic. In these experiments we will point out the production
of carbon dioxide during fermentation.
The oxidization of glucose in living organisms occurs in two principal phases: the
glycolysis and the respiration.
Glycolysis happens in the cytoplasm of cells, respiration inside the mitochondria. The
yeast cells can grow both with and without oxygen, but in the absence of oxygen, the yeast
cells limit themselves to use glycolysis. In this case, they demolish the molecule of
glucose into molecules of pyruvic acid which then they convert into acetaldehyde and
lastly into ethyl alcohol or ethanol. During these reactions, the yeast cells obtain
energy for their metabolism, without using proper respiration. As we have said, a final
product of this reaction is ethyl alcohol. For this reason, this process is often called
alcoholic fermentation. During fermentation of the must, the yeast cells yield from 12 to
17% alcohol. Besides the energy, the other important product of this fermentative process
is carbon dioxide. In fact wine is often rich in this gas and is then called sparkling.
Now let us pass to the experimental part.
1 - Introduce some brewer's yeast (Saccharomyces cerevisiae) mixed with water and sugar in
a flask. Close the container with a rubber balloon. As time passes, you will see the
balloon inflate, showing the production of carbon dioxide.
2 - If you want to get quantitative measures, which will allow you to evaluate the effect
of parameters such as the temperature, the substrate composition, etc. Close the bottle
with a rubber plug and pass a pipette with a capillary end through it, See figure 18.
Place a drop of colored water inside the capillary. Now, knowing the internal diameter of
the capillary, the shifting of the drop along the tube in a given period of time, will
give you the amount of CO2 produced.
3 - Make other tests replacing the sugar with cabbage cut into thin pieces and boiled,
potatoes, apples, crushed grapes, vegetables, etc. Often, these products are rich in
starch, a compound similar to sugar and which is used the same as sugar by the yeast.
Evaluate the different productivity in carbon dioxide by the different substrata. It is
indicative of how much sugar and starch are in these substances.
4 - How to distinguish carbon dioxide from oxygen. Are both gases being produced in the
different processes of fermentation, respiration and photosynthesis? If you succeed in
collecting sufficient amounts of these two gases, you can make them bubble in a solution
of lime water: while the carbon dioxide makes this solution cloudy by forming calcium
carbonate, the oxygen does not.
http://gened.emc.maricopa.edu/bio/bio181/BIOBK/BioBookGlyc.html
Cellular Metabolism and Fermentation ***
http://www.accessexcellence.com/LC/SS/ferm_index.html
Microbial Fermentations: Changing The Course Of Human History (Information)
Internet keywords: yeast fermentation alcohol.
![]() |
LUNG MODEL Contrary to what people think, lungs do not have muscles of their own, but they are
dilated or compressed by means of the movements of chest and diaphragm. The device of
figure 19 shows how a diaphragm causes air to enter and leave the lungs. In the phase A,
the balloons have to be as empty as possible. If you are a teacher, ask to your pupils
what would happen if there was a hole in the bottle. Then make a hole, so everybody will
see that, even if the diaphragm is lowered, the lungs will not fill with air. Yet
it is easy to close the hole and restore the functioning of the lungs. To prove this, seal
the hole of the bottle with some sticking tape and move the diaphragm again. This
simple experiment shows how a hole in the chest could be fatal. Also how you could save a
person by simply plugging the hole. If you have difficulties in finding the Y tube to
build the model of the lungs, just use a tube. You will only have one lung, but the
principle is the same and you know that in reality there are two. |
EXTRACTION OF THE CHLOROPHYLL![]()
The chlorophyll in plants can be used for a chromatography experiment where you separate
the different pigments, and test their fluorescence. In the chloroplasts there are many
photosynthetic pigments: chlorophyll a, b, c, d, phycocyanine, phycoerythrin, carotene,
xantophills. Their type and amount depends on the plant. Some of these pigments are
soluble in water, others are insoluble. It is possible to extract the former ones using
water as solvent, it is possible to extract the second ones using alcohol or better yet,
acetone. Pay attention because both alcohol and acetone are flammable. As acetone is also
toxic, use it only out of doors or under a fume hood. We will also try to extract the
pigments of yellow or red leaves.
Preparation of vegetable tissue: Collect some green leaves from a plant. Insert them in a
blender with some water. Blend them until you obtain a dense and homogeneous cream. You
can proceed with this for the water part of the experiment, otherwise, spread the cream on
a clean ceramic or plastic surface and allow it to dry. In this way, you will obtain a
powder you can use with different solvents. Take a little of it and put it in a mortar
with some solvent. Refine the mixture with the pestle. If you are using acetone or other
toxic solvents, work outside or under a fume hood.
Do NOT insert solvents in the blender, other than water. They could emit dangerous and
toxic vapors and could catch fire from the sparks of the electric motor. Also, the
solvents could attack the plastic material of the blender (especially acetone), causing
small leaks ruining the container. An adult must be present when these experiments are
made.
1 - Extraction of the pigments with water: crush the vegetable mixture in a mortar adding
a few drops of water to obtain a creamy product. Then add a little more water (the liquid
needs to be as concentrated as possible) and filter the mixture. Collect the liquid.
2 - Extraction of the pigments with alcohol: do as above, replacing the water with 95%
alcohol. To enhance the extraction, pour the alcoholic puree into a test tube and this in
a bain-marie or in a pot or in a beaker containing water. Boil until alcohol will become
green. During this operation, if necessary add alcohol to the mixture to replace what has
evaporated. Use electric stoves or a hot plate, do not use a gas flame or gas stove.
Filter the mixture and collect the liquid.
3 - Extraction of the pigments with acetone: adding a little acetone, (not too much since
the liquid has to be as concentrate as possible.) crush the dry leaf powder in a mortar.
Filter the mixture and collect the liquid. You can also allow some of the solvent to
evaporate later.
4 - Make the same extraction using yellow leaves and then using red leaves. These are
collected in the Fall after they turn color.
5 - In a dark room, try to illuminate each of these extracts with UV light. They should
fluoresce. Compare the fluorescent emission of the different extracts.
6 - Try boiling the vegetable material before blending it. Check to see if you got the
same results that you had with fresh material.
7 - Repeat the procedure and save the liquid for the next procedure: "Paper
chromatography", make a chromatography test of the different extracts of green,
yellow and red leaves. Compare the chromatograms among them. Try to identify the pigments.
Test the fluorescent emission from them.
http://alamo.bu.edu/labs/Chloro3_1.html
Extraction of Chlorophyll and its Fluorescence
http://gened.emc.maricopa.edu/bio/bio181/BIOBK/BioBookPS.html
Photosynthesis ***
http://www.furman.edu/~lthompso/bgy34/sunshade.html
Light Dependence of Photosynthesis in Sun and Shade Plants
http://www.people.fas.harvard.edu/~dlrobert/Pigments.html
Algal Pigments (method of extraction and Rf of photosynthetic pigments of
algae)
Internet keywords: chlorophyll extraction leaf mortar
PAPER CHROMATOGRAPHY![]()

Chromatography is a method of separation of substances based on their different mobility
in a given stationary support. If you have a mixture of substances, chromatography can
allow you to separate them. For example, inks are usually formed by a mixture of dyes,
with the chromatography you can separate them and then analyze and identify them.
Chromatography is also used to obtain large quantities of a pure substance. There are many
methods of chromatography. Among them there is paper chromatography, the thin layer
chromatography (TLC), gas chromatography, the liquid phase chromatography, the column
chromatography. Usually the mixture of substances to be separated is inserted in a
solvent. The type of solvent and of stationary medium can be chosen in a wide range of
possibilities. Usually, this choice is made according to the molecules to be separated.
According to the situation, one can exploit the molecules different size, chemical
affinity toward the support, the amount of ionization, pH, solubility in water, etc. This
experiment is for home or school so we use solvents and supports that are easy to find.
Test tubes are often used to contain the solvent vapors, keeping the paper from drying and
not overexposing the experimenter. Later on we will give you some experiments for paper
and thin layer chromatography.
Also calculate the value of Rf of each band isolated (with reference to the
pencil line, Rf = distance moved by the solute / distance moved by the
solvent).
In these tests, the mixture to be examined has to be in high concentration. You can
prepare the mixture according to the preceding experiment. Cut a paper filter stripe
narrow enough so that it can be inserted in a test tube without touching the walls (wider
at the bottom), as shown in the figure 20. With a pencil trace a horizontal line at 25 mm,
(1 inch) from the bottom of the stripe. Place a little drop of mixture on this line and
let it dry. Place another drop on the previous drop and let it dry. Repeat this operation
to obtain a small, very concentrated spot. With a pin, fix the stripe to the bottom of the
tube plug. Pour several cc of solvent in a test tube. There needs to be enough so the
solvent is about half way between the bottom of the paper and the 25mm (1 inch) mark on
the paper.
Insert the stripe in the tube. The smaller part of the stripe has to plunge into the
solvent without touching the bottom of the tube. The pencil line and the spot have to be
at about one cm above the surface of the solvent. For capillary action, the solvent will
be absorbed by the fibers of the paper and, when it reaches the spot, it will start to
carry the substances present in the mixture. According to their characteristics, these
substances will travel faster or slower among the fibers of cellulose and the faster one
will pull a head of the slower and show as separate bands on the paper. Remove the stripe
before the solvent reaches the end.
With a pencil, immediately mark the position attained by the solvent and let the stripe
dry. Here a list of the first test you can do:
1 - Mixture = black ink, solvent = water, support = filter paper. It is best if the paper
is of pure cellulose, anyway you can try other types of paper as well.
2 - As mixture use different inks, tomato juice, carrot juice, red turnip juice, red
cabbage juice, leave extract, etc.
3 - Use first alcohol and then acetone as solvent. Pay attention because these solvents
are flammable, and acetone is also toxic, so do this experiment outdoors or in a fume
hood. The solvent has to be able to dissolve the components of the mixture. For example,
water is not suitable for fat substances, use acetone instead. People use many substances
as a solvent. You will find some of them listed in the sites listed below. As we said in
the previous experiment, the various mixtures have to be prepared in water, then dried and
dissolved into a little solvent. The mixture needs to be as concentrated as possible.
4 - Use plates for thin layer chromatography as support. Buy them in stores which sells
chemical laboratory items. Often, these stores are located near universities.
5 - Make other tests using plates for TLC you have made by yourself. To this scope try
alumina powder, calcium carbonate, silica gel, magnesium silicates, etc. To compact the
support material from a powder, use a binding agent such as soluble starch, plaster,
gelatin, Arabic gum, etc. As a support or base use glass, aluminum, or plastic plates. You
can use also acetate sheets like those used for transparencies.
http://www.ctl.sri.com/pals/tasks/5-8/PaperChrom/
Paper Chromatography
http://www.accessexcellence.com/LC/SS/chromatography_background.html
An Introduction to Chromatography ***
http://library.thinkquest.org/19037/paper_chromatography.html
Paper Chromatography
http://155.135.31.26/oliver/satcoll/papchrom.htm
Paper Chromatography
http://www.iit.edu/~smile/ch9413.html
Paper Chromatography
http://ekcs.neric.org/~jbuckley/lelab/chromatography.html
Paper Chromatography on Chlorophyll
http://matrix.mvhs.fuhsd.org/~i-heng/Biowebsite/journals/vol1/1/a2.html
Paper chromatography applied to spinach chlorophyll
http://www.doggedresearch.com/chromo/experiments.htm
Paper and Thin Layer Chromatography Experiments
http://home.earthlink.net/~dayvdanls/photolab/photolab7.htm
Paper Chromatography Rf Calculations
Internet keywords: paper chromatography rf school.
PAPER ELECTROPHORESIS![]()

Electrophoresis is another separation technique. It is based on the different mobility of
ions (molecules which are charged) in a support which is subjected to an electric field.
Ions run more or less quickly along the substrate according their charge, size, shape,
etc. According to the technique which is used, the apparatus consists of two small basins
which contain an electrolyte, a support (i.e.: filter paper, cellulose acetate strips,
polyacrylamide gel, or a capillary tube), an electrical DC power supply and two
electrodes. Electrophoresis is widely used to separate substances such as amino acids,
proteins, strands of DNA, etc. As in the case of chromatography, people use different
supports and solvents according to the substances to be separated and the techniques used.
C. L. Stong, on the magazine "Scientific American" proposed an experiment on
paper electrophoresis (4).
1 - As shown by the figure 21, inspired by this article, place two little basins a few cm
(one inch) apart. Pour in the basins an electrolyte made of a teaspoon of table salt and
another of baking soda in 300 ml(1 1/2 cups) of tap water. Place a glass plate on the two
basins and on it place a stripe of filter paper soaked with the electrolyte. This stripe
has to be immersed with each end in the electrolyte in the basin for to complete the
electrical circuit. With a pencil, draw a line across the filter paper and place a little
drop of blood on it. Cover the paper with a second glass plate. Put an electrode into the
electrolyte of each basin and apply 45V in direct current (from 4 to 8 Volt per cm). You
can obtain this from 5, 9volt batteries connected in series. With the passing of time, you
should see 5 little spots move toward the negative electrode. These spots are made of
different proteic components of the plasma: globulins (alpha, beta, gamma), albumin and
fibrinogen. In reality, to make these substances better visible it is necessary use a
stain such as bromphenol blue. Lacking it, try red cabbage juice.
2 - Try also to separate the components of the substances already used in the
chromatography experiments and observe what it happens. Keep in mind that some of these
substances may not be ionic.
LOOK OUT!: Do not use high voltages for this
experiment. Never touch the electrodes, the electrolytes, or the paper stripe. Take care
never to short out the two electrodes. Finally, we recommend to insert a fuse on one of
the two cables. The fuse will break the circuit when there is too high a current. We
suggest about 10 mA. At the end of the migration of the spots, remove the electrodes from
the basins and take off the cables from the batteries.
http://www.chemistry.adelaide.edu.au/external/Soc-Rel/Content/electrop.htm
Electrophoresis (an introduction)
http://www.chemistry.adelaide.edu.au/external/Soc-Rel/Content/cap-el.htm
Capillary Electrophoresis (CE)
http://a32.lehman.cuny.edu/molbio_course/agarose.htm
Agarose gel electrophoresis for DNA
http://a32.lehman.cuny.edu/molbio_course/overview.htm
Molecular Biology Course Overview
http://faculty.uca.edu/marc.hirrel/bio1/GelElectro2.htm
Protein Gel Electrophoresis
Internet keywords: electrophoresis introduction.
Bibliography: 1 p184. 1 p 207. 4.
PLANT TISSUE CULTURE![]()
If placed in a suitable nutrient environment, cells and tissues of many organisms are able
to reproduce and form new plants or animals. Now, we will deal with vegetable tissues,
whose culture is simpler than that of animal cellules and tissues. It is necessary to
prepare a nutritive and sterilized culture medium for the piece of plant tissue. Keep the
culture in the suitable conditions of light and temperature and which vary from plant to
plant. Over many days, you will observe the growth of a callus or roots or shoots. In this
way you can obtain even whole plants (cloning). These experiments show that special cells
keep all the information necessary to generate the whole plant.
As we have mentioned, it is necessary avoid bacteria and moulds in the cultures. For this
you will need sterilize tools, vials, tubes, and nutrient medium. Place each in an
autoclave for a ten minutes or, lacking an autoclave, a pressure cooker. The tissues as
well have to be free from microorganisms and they have to be sterilized with bleach (40%
solution for 15 min) or with alcohol.
The transfer of the tissues into the test tubes has to be made in aseptic conditions,
using a sterile box. Lacking that, make your first trials in a quiet place, as devoid of
wind and dust as possible. The culture medium should contain water, vitamins (particularly
those of the B-complex. For this, use yeast extract), sugars, mineral salts. To enrich the
water with mineral salts, boil some water with a handful of soil, then let settle and
filter it. Usually, people also insert 0.5-0.8% of agar-agar to "solidify" the
medium. As culture medium, coconut milk has been used. It contains mineral salts, sugars,
vitamins and growth hormones.
1 - For yours first tests of micropropagation, use strawberries tissues.
2 - If this simple experiment interests you, you can continue on the way of the in
vitro culture of vegetable tissues. In fact you can propagate a lot of plants in this
way. Plants easy to culture are the following: tomato, potato, strawberry, chrysanthemum,
geranium, sunflower, tobacco, carrot and onion. You can use tissues obtained from seeds,
such as the embryo, but you can use also tissues taken from adult plants, such as tissues
of roots, stems, apical buds, shoots, leaves, even single cells. Each plant and tissue has
its own needs. They are different from each other. You can try the influence of the
vegetable hormones, special nutrients, etc.
This field is very broad and complex so, if you are interested in continuing with these
experiments, you can buy special books and you should build a sterile box.
http://tomgreen-ext.tamu.edu/mg/tissue.htm
Plant Tissue Culture for the Gardener
http://user.school.net.th/~anuparp/bptc1.htm
Basic Principle in Plant Tissue Culture Technique
http://www.flytrap.demon.co.uk/cc/data/tcn1_man.htm
Plant Tissue Culture Kit Manual
http://www.biotech.iastate.edu/publications/lab_protocols/AV_Micropropagation.html
Plant Micropropagation Using African Violet Leaves
http://aggie-horticulture.tamu.edu/tisscult/microprop/microprop.html
Plant Tissue Culture (links)
Internet keywords: in vitro culture plant tissue micropropagation.
CULTURE OF LUMINESCENT BACTERIA![]()
A lot of organisms emit light. Of course you know fireflies, but there are also other
luminescent organisms such as some fishes, mushrooms, bacteria, dinoflagellates, and
shellfishes. The culture of luminescent bacteria is not difficult. What you have to do is
to get a strain of luminescent and harmless bacteria and raise it in a suitable culture
medium. A bacterium widely cultured and used also for lessons in schools is the Photobacterium
phosphoreum, now renamed: Vibrio phosphoreum.
Search for information about the mechanism of the bioluminescence. You can find
information for this culture and general information on the Internet at sites listed
later. There is a lot of information on bioluminescence on the Internet. There are even
amateur sites devoted to this topic. You can buy the Vibrio phosphoreum at commercially,
such as the ATCC (American Type Culture Collection) http://www.atcc.org/.
You can find other firms of this type on the Internet, using the keywords: culture
collection. Also try the links for the protists experiment. These companies also supply
the culture media and in their sites you can often read their composition.
LOOK OUT!: In these experiments, need the
help of a biologist to avoid culturing dangerous microorganisms. Even with help, keep the
cultures only for a short time, wash your hands, wash and disinfect all tools which have
been in contact with the cultures.
http://www.didier-pol.net/4BAC-LUM.html Utilisation Pedagogique de
Bacteries Luminescentes (in French)
http://www.farmacja.amg.gda.pl/~microbio/bakterie_sw/index_en.html
Luminescent Bacteria
http://www.unibo.it/isbc/Files/BC_PlanktonNekton.htm
Bioluminescence in Plankton and Nekton (there is a list of luminescent organisms)
http://www.ncbe.rdg.ac.uk/ncbe/PROTOCOLS/PRACBK/flash.html
Flash! Bacterial illumination
http://www.disknet.com/indiana_biolab/b203.htm
Isolation of Pure Cultures Of Bacteria (Please, read the safety warnings present in
this website)
http://siobiolum.ucsd.edu/biolum_web.html
Bioluminescence Web sites
Internet Keyword: luminous bacteria luminescent bioluminescence luciferin luciferase.
To find companies which sell strains of microorganisms use the keywords: culture
collection.
DRAWING NIGHTTIME INSECTS![]()
Are the insects which fly around lamps at night attracted by light or heat? To find out,
use a clothing iron and an electric lamp. The electric lamp produces light with a little
heat, the iron produces only heat. Put both on a table. Keep them at least a meter (about
a yard) apart and with the emitting surfaces turned away from you. Note the different
behavior of insects. Mask the lamp with plastic sheets of different colors and verify if
bugs are more attracted to a particular color. This is also a method to capture nighttime
insects, particularly moths, so you can observe them with a lens or a stereoscopic
microscope.
| CELLULAR DIVISION The fast growing roots of plants have cells which actively divide. Observe with a compound microscope the apex of an onion, garlic, or bean root. You can observe cells and their chromosomes in various stages of the cellular division, or mitosis. 1 - To carry out this experiment, immerse the lower part of an onion in water and leave it to root for four or five days. When the roots have grown by a couple of centimetres, cut off some of the ends of 1-2 mm in length. Place them on a microscope slide, cutting them according to length. Add a few drops of muriatic acid (check that it is a 10% solution of hydrochloric acid) and keep the root tips immersed in the acid for approximately 15 minutes. The root tips should be flaccid, if not, prolong their exposure to the acid. Rinse away the acid with distilled water (or tap water). With 2 long pins, separate the fragments as much as possible so that they are very thin. Colour them with 0.5% Toluidine blue. After 2 minutes, cover with a coverslip, crush the tips and wash away the dye by adding water on one side and absorbing it on the other using a paper towel. With a microscope, search for cells undergoing mitosis. For further information: http://www.funsci.com/fun3_en/mitosis/garlic.htm 2 - In the cells of the salivary glands from the larva of Drosophila (vinegar or fruit fly) you can observe the cellular division.
http://saps1.plantsci.cam.ac.uk/worksheets/ssheet17.html
Mitosis in root tips *** |
Figure 22 - Anaphase |
FALSIFICATION OF THE SPONTANEOUS GENERATION![]()
Until the end of the 17th century, people believed that little animals like flies and
worms could spontaneously be born from substances in decomposition or from mud. Francesco
Redi, Lazzaro Spallanzani and Louis Pasteur made experiments which proved the idea of the
spontaneous generation was wrong. At your home or in your school you can made such
experiments too.
1 - Take two glass jars with a screw top. Put in each a little piece of cooked apple and a
spoon of vinegar. For a night, leave one of these jars opened so it can be visited by
vinegar (fruit) flies. Close the other jar with the lid and sterilize it by placing it in
boiling water in a pressure cooker for a half an hour. After removing it from the cooker,
let it cool, leaving it closed. The morning after, let the possible bugs present into the
first jar leave and then close it with a fine gauze or a plastic sheet on which you will
make some pinholes to allow oxygen to enter. After a few days, you should see some bugs in
the first jar, and none in the second one. What has happened in the first jar which has
not happened in the second? Some vinegar flies laid eggs in the first jar and from them
some new flies are born. In the second jar, even if there had been eggs, these are dead
because of high temperature in the pressure cooker. More eggs were not laid because the
jar was kept closed. With experiments like this one, you can realize that living beings
cannot born from nothing, but they are born from other organisms like them. Fall is the
more suited season to do this experiment because vinegar flies are particularly active.
2 - Anyway you can try to adapt this experiment to organisms present at other times of the
year. For example, if you place some dry grass in a water glass, in few days a deal of
protists will appear. If instead you will put the same material in a close glass pot and
if you boil it, nothing will be born. Only some rare thermoresistant microorganisms,
bacteria which resist the high temperature of boiling water.
... Uhm, and still there is something which is not working: if any living being comes from
another living being, from where has come the first living being from which all others are
derived? Can we consider completely falsified the theory of the spontaneous generation
with these experiments? Is it possible to assert that, even if the spontaneous generation
is not the usual way with which living creatures are born, at least at one time during
billions of years it has happened on the Earth or another place in the Universe? It is no
accident that there are scientists who study how life began in the first place.
http://www.fwkc.com/encyclopedia/low/articles/s/s024000786f.html
Spontaneous Generation
http://biology.clc.uc.edu/courses/bio114/spontgen.htm
Spontaneous Generation
Internet keywords: spontaneous generation.
EXPERIMENTS WITH PROTISTS![]()
Let us see now how protists and other little animals of ponds react to alteration to their
environment.
1 - Some microscopic algae, like the euglena, search out light (phototaxis) and to do this
they use an organelle sensible to the light, named stigma. With a dark paper, cover the
bottom part of a test tube holding a culture of euglena. The part of the test tube exposed
to light should become green, rich with algae. Make the same experiment with other
microscopic algae and with protozoa.
2 - Add two or three drop of distilled water to a little water drop collected in a pond
and watch what happens to the protists. Very probably you will see them inflate and then
explode. This occurs because of the different saline concentration inside and outside the
protists and the osmotic pressure which is produced inside their cells.
3 - Protists are sensitive to most chemicals and generally they react by running away; in
some cases instead they approach them (chemotaxis). Prepare some microscope slides with
protists and observe through the microscope their behavior when you add acidic substances
(i.e.: vinegar), basic substances (i.e.: backing soda), glucose, salt, sparkling water
(rich of CO2), broth, milk, tiny grain of cheese, dyes, etc. At the
beginning use very low amounts of these substances, then increase their concentration.
4 - From a pond or an aquarium, collect a hydra and place it on a microscope slide with a
pair of water drops. Observing this tiny polyp through the microscope, probably you will
see some sucker shaped microorganisms (trichodina) moving on its body. Watch what happens
after adding a little drop of vinegar to their water! Trichodina will escape from the
hydra and probably die. Hydra itself will have launched many of its harmful paralyzing
darts.
5 - Submit protists to different stimulus such as light, temperature, electric field
(about 5 V in DC). In this last case, some protists will gather on the cathode (the
negative - pole). Also amebas are inclined to move towards the cathode. Change the
polarity of the current and observe the behavior of the protists.
Internet Keyword: phototaxis chemotaxis protists.
Amateur Scientist Sites Websites which propose experiments
It is not easy to write a conclusion for such a heterogeneous series of experiments. However, we hope you have appreciated this technique of gathering many briefly described experiments in a single article. At least it offers you many choices. We now ask for your help: please report to us the links which are not working any more; tell us about other interesting sites; tell us what experiments you would like to see treated in a more detail; send us other comments and suggestions. You can use the evaluation card below. Will you help us?
| 1 | E. Morholt, P.F. Brandwein | A Sourcebook for the Biological Sciences | Saunders College Publishing - Ward's |
| 2 | G., L. Durrell | The Amateur Naturalist | Dorling Kindersley Limited, London |
| 3 | C.H. Hampton, C.D. Hampton, D.C. Kramer et al. | Classroom Creature Culture: Algae to Anoles | National Science Teachers Association |
| 4 | C.L. Stong | Book of projects for The amateur scientist | Simon and Shuster Inc 1960 |
| 5 | R. Fitter, R. Manuel | Collins field guide to freshwater life | W. Collins Sons & Co 1986 |
| 6 | H. Bellmann | Leben in Bach und Teich | Mosaik Verlag GmbH 1988 |
Send your opinion on the article